On Solving Some Large Linear Problems: By Direct Methods
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
A Survey of Direct Methods for Solving Variational Problems
This study presents a comparative survey of direct methods for solving Variational Problems. Thisproblems can be used to solve various differential equations in physics and chemistry like RateEquation for a chemical reaction. There are procedures that any type of a differential equation isconvertible to a variational problem. Therefore finding the solution of a differential equation isequivalen...
متن کاملSolving large systems arising from fractional models by preconditioned methods
This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...
متن کاملSome Methods for Solving Quasi-Equilibrium Problems
Let X be a given nonempty closed convex subset in IR and let f : X×X −→ IR be a given bifunction with f(x, x) = 0 for all x ∈ X. We are interested in the following quasi-equilibrium problem { Find x ∈ K(x) such that f(x, y) ≥ 0 ∀ y ∈ K(x) (QEP ) where K(·) is a multivalued mapping X −→ 2 . When the mapping x −→ K(x) is such that K(x) = X for all x ∈ X, (QEP ) reduces naturally to the equilibriu...
متن کاملStrategies for solving large location - allocation problems by heuristic methods *
Solution techniques for location-allocation problems usually are not a part of microcomputer-based geoprocessing systems because of the large volumes of data to process and store and the complexity of algorithms. In this paper, it is shown that processing costs for the most accurate, heuristic, location-allocation algorithm can be drastically reduced by exploiting the spatial structure of locat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: DAIMI Report Series
سال: 1980
ISSN: 2245-9316,0105-8517
DOI: 10.7146/dpb.v9i111.6529